
Protecting APIs with OAuth 2.0

Protecting APIs with OAuth 2.0
On this page:

Background
Registering a scope
Parsing and validating an access token
Performing token introspection/validation
Example Ecosystem

Components
Procedure

Related Articles

Background

The MIT OIDC server can serve as an external authorization server for APIs. Direct any clients who wish to have access yourhttps://oidc.mit.edu/
protected API to the MIT OIDC server to get OAuth 2.0 access tokens.

This assumes you have successfully registered a client with the OIDC server.

Registering a scope

In addition to the scopes needed to obtain end-user information, the server supports additional scopes. Your API should register a scope or a
structured scope with the server.

Parsing and validating an access token

All access tokens issued by the MIT OIDC server are asymmetrically signed JWTs. If a protected resource simply wants to verify the origin of a
given token, it can parse the JWT and validate the signature using JWS and the server's published public key. This process is described in

.[istcontrib:Logging in users to your application using OpenID Connect]

If validation fails, your API should deny access.

Performing token introspection/validation

All protected resources that make use of the token introspection endpoint must be registered with server. The MIT OIDC server supports
registration through a user-facing developer portal at . Be sure to add any scopes required for accessinghttps://oidc.mit.edu/manage/dev/dynreg
the API to the registration request. For example, if your client requests tokens with the scope "my_api", then the protected resource must also be
registered with that scope, otherwise it will be forbidden from validating those tokens.

Successful registration will produce a and which are used in the call to the introspection endpoint.client_id client_secret

To valuate a token using token introspection, make an HTTP POST to . Include the and https://oidc.mit.edu/introspect client_id client_secret
received during registration as the username and password of an HTTP Basic Authentication header. Include the token being checked as an
HTTP Form Parameter with the name in the body of the request. The server will respond with a JSON object containing the following fields:token

active: whether or not the token is currently active
If the token is not active, your API should immediately deny access.

sub: the 'subject' of the user who authorized this token
user_id: the username of the user who authorized this token (specific to MIT's deployment)
client_id: the identifier of the client that requested this token
scope: a space-separated list of scopes that the token was issued with

Example Ecosystem

This example may help clarify things. Imagine you are writing an API, and wish to protect it with OAuth 2.0, and wish to allow MIT community

https://oidc.mit.edu/
https://oidc.mit.edu/manage/dev/dynreg
https://oidc.mit.edu/introspect

1.

2.
3.

4.
5.
6.

7.

members to use it.

Components

https://example.mit.edu/developers – A web page where community members can register to use your API, and receive
access tokens. It may also contain API documentation.

This is an OpenID Connect .client
https://example.mit.edu/api/ – The root of your API. API consumers make requests to endpoints such as

 and https://example.mit.edu/api/things https://example.mit.edu/api/stuff
This is an OpenID Connect .protected resource

Procedure

Register a client with the OpenID Connect server. Within the client registration, add scopes that your API will use. You must register at
least one scope. For the purposes of this example, assume the scope is "test". You should add the other standard scopes only if your
client will be authenticating end users and requiring user information.
Register a protected resource with the OpenID Connect server. It should be registered with the same scopes as your client.
When someone visits , create a link that directs them through the authorization flow, ashttps://example.mit.edu/developers
described in " ". When requesting scopes in the authorization[istcontrib:Logging in users to your application using OpenID Connect]
scope, be sure to add the scopes for your API. (e.g. "test")
Provide the returned access_token to the user.
The user then goes on to access and presents the access_token.https://example.mit.edu/api/things
The API, which has been registered as a protected resource, and assigned its own client_id and client_secret, takes the access_token
and presents it to the introspection endpoint.
Using the information contained in the response from the endpoint, the API decides whether or not to permit access.

Related Articles

[MIT's OpenID Connect Server Information]
[istcontrib:Logging in users to your application using OpenID Connect]

https://example.mit.edu/developers
https://example.mit.edu/api/
https://example.mit.edu/api/things
https://example.mit.edu/api/stuff
https://example.mit.edu/developers
https://example.mit.edu/api/things

