
How to get random numbers

How to get random numbers

/*
 * This stock answer explains how to generate random numbers. To see how
 * it really works, you can save this answer to a file. If you are
 * using the olc_answers program, hit "s" and enter a filename.
 * Then compile that file using the command:
 *
 * cc filename.c
 *
 * and try running it by typing
 *
 * ./a.out
 *
 * NOTE: On the Sun workstations, you should use the rand() and srand()
 * function calls, instead of random() and srandom().
 *
 * You might also find more information on alternative ways of getting
 * random numbers by looking at
 *
 * a. chapter 7 of the Numerical Recipes book
 * b. the NAG library manual.
 *
 *
 */

main()
{
 double a_number;

 /*
 * The simplest way to get a random number is just to call the
 * function 'random()'. It returns a random number between
 * 1 and 2**31 - 1. For example:
 */

 a_number = (float) random();
 printf("A big random number is %lf.\n", a_number);

 /*
 * To get a random number between 0 and 1, you would use this:
 *
 * double number;
 * number = (float) random() / (float) 0x7fffffff;
 *
 * Note that the constant 0x7fffffff is equal to (2**31)-1, which is the
 * maximum value of the random number generator.
 */

 a_number = (float) random() / (float) 0x7fffffff;
 printf("A random number between 0 and 1 is %lf,\n", a_number);

 /*
 * However, when used as above, the program will get
 * the same random numbers every time it is run. Sometimes
 * this is good, sometimes not. For example, in Monte Carlo
 * simulations a set of identical "random" numbers is useful
 * for debugging, but bad for getting real data.
 *

 * To change the set of numbers generated, use 'srandom' to
 * set an initial state. The number that you use to set this
 * state is called a "seed". Note that identical seeds will
 * generate identical sequences of random numbers. A possible
 * seed is the number of seconds since Jan 1, 1970, GMT, the
 * value given by time or the process id (from 'getpid').
 * Both are used here. This 'srandom' call only needs
 * to be done once per program.
 */

 srandom(time(0) * getpid());

 /*
 * Now get and print a "real" random number.
 */

 a_number = (float) random() / (float) 0x7fffffff;
 printf("But a more random number between 0 and 1 is %lf\n", a_number);

 /*
 * So, if you wanted a random number between 0 and 10, you would take the
 * number you got above and multiply it by 10, and round to the nearest
 * integer (or whatever).
 */

 a_number = 10.0 * (float) random() / (float) 0x7fffffff;

 printf("But a more random number between 0 and 10 is %lf\n", a_number);
}

