
SCASUBJI User Interface

SCASUBJI User Interface
Please note that this page and related pages are being developed as part of the CIM Courses Project and are subject to change.

This article describes the functionality of the SCASUBJI form. This form allows power Registrar users to directly edit Subject data in the
Container/Template Subject Structure.

SCASUBJI User Interface
Accessing SCASUBJI

Links
Authorizations

Restrictions/Validations
FAQ
Developer info

Thin apache proxy
Location and configuration

 and endpoints/service/apis/user /service/apis/tier
Architecture diagram

Frameworks used
APIs
Setup
Two main views

1: Search
MIT subjects
Non-MIT subjects
Other functionality on the page

Deactivate
Reactivate
Backdate
Create New Subject link
Show All Templates for Container link

2: Create/Edit Subject
Supporting data

Tier
Department info
Requisites
DisplayControls

CSS
Subject Management Documentation Index

Accessing SCASUBJI

Links

User access SCASUBJI user interface through the SMD forms collection:

Dev - https://sis-data-maint-dev.mit.edu/sdm/
Test - https://sis-data-maint-test.mit.edu/sdm/
Prod - https://sis-data-maint.mit.edu/sdm/

Direct links to the SCASUBJI UI:

Dev - https://subjectmgmt-dev.mit.edu/#/
Test - https://subjectmgmt-test.mit.edu/#/
Prod - https://subjectmgmt.mit.edu/#/

Authorizations

Please refer to the KB page. The roles that pertain to CIM Courses access are sent via the Subject Management Authorizations User Provisioning
.Feed

https://sis-data-maint-dev.mit.edu/sdm/
https://sis-data-maint-test.mit.edu/sdm/
https://sis-data-maint.mit.edu/sdm/
https://subjectmgmt-dev.mit.edu/#/
https://subjectmgmt-test.mit.edu/#/
https://subjectmgmt.mit.edu/#/
http://kb.mit.edu/confluence/x/CzqACQ
http://kb.mit.edu/confluence/x/pzOACQ
http://kb.mit.edu/confluence/x/pzOACQ

Restrictions/Validations

The majority of validations performed by SCASUBJI can be found on the KB page. Many of theSubject Management Business Rules
restrictions/validations are performed using the . This article lists the restriction/validations that are performed onMIT Subject Management API
the front-end by SCASUBJI only.

Perform a check on save for a Subject Number = "URN" and for attribute "UROP". If these conditions are true, check for a "URN"
attribute. If "URN" is not present, "URN" will automatically be included in the JSON to the API upon save.

If no value is provided for Roll_Faculty and no value already exists, set to "P" for "Previous Term"

FAQ

Q: Why are the input boxes related to Equivalencies and Scheduling Relationships grayed out except for the on a container's most
recent template?
A: TBD (Tim to add)

Developer info

Thin apache proxy

All requests from the UI are routed through an apache server which acts as a thin proxy to the back-end APIs.

The apache server:

Serves the files that make up the angular application (css, html, js, etc)
Integrates with Touchstone
Relays requests to API, appending client id and secret and referred user info
Exposes endpoints for getting property and user info

Location and configuration

The apache server lives on a virtual machine in our VMWare Cloud. It is managed by the App Delivery team and configured via Puppet.

The puppet config for the non-production tiers can be found at . File: hiera:nodes: <servername>:https://github.mit.edu/ops/puppet-environment
common.yaml. Contact the App Delivery team for information about the production configuration.

Production is load balanced between two servers.

/service/apis/user and endpoints/service/apis/tier

Two endpoints are configured directly in the apache configuration.

The endpoint returns information provided by Touchstone about the authenticated user/service/apis/user

The endpoint returns tier-specific properties to be used by the UI/service/apis/tier

Architecture diagram

Show/hide diagram

http://kb.mit.edu/confluence/display/istcontrib/Subject+Management+Business+Rules
http://kb.mit.edu/confluence/display/istcontrib/MIT+Subject+Management+API
https://github.mit.edu/ops/puppet-environment

[Image source:]https://wikis.mit.edu/confluence/display/EduSys/Thin+Apache+Proxy+Diagram

Frameworks used

AngularJs 1.63
Bootstrap 3
angular-query-builder for requisites editing ()https://mfauveau.github.io/angular-query-builder/
Build tools: Grunt, Bower, Sass CSS preprocessor, husky/prettier (on commit)

APIs

https://ist-developer.mit.edu/academics/mit-subjects-v1

APIs start with: /service/apis/subjectmanagement/

Calls to APIs also have a unique token appended as a cachebuster (will appear as 'token_' plus a timestamp). This will prevent the browser from
using cached versions of API results.

Setup

Clone repository:
git clone git@github.mit.edu:ist-devops/subject-managment-ui.git

To build local version, from inside root folder of the repo you just cloned, run:
npm install

To run local server, from inside same folder:
grunt serve

Work from inside the /app folder. /dev folder will be created upon any saves.

Two main views

SCASUBJI comprises two main views: 1. a search page that enables user to manage templates/containers, and 2. a create/edit page to enter
details on a subject, including cross-listings, equivalents, requisites, etc.
(Note that the Home button takes user to the main SDM search page, not the main SCASUBJI page.)

1: Search

View: views/home.html
Controller: scripts/controllers/homeCtrl.js
Factory: Factories/homeFactory.js

MIT subjects

Clicking search button calls searchSubj() in controller. If this is an MIT subject, this then calls:

homeFactory.getSubjectDtls($scope.course, $scope.number.toUpperCase())

https://wikis.mit.edu/confluence/display/EduSys/Thin+Apache+Proxy+Diagram
https://mfauveau.github.io/angular-query-builder/
https://ist-developer.mit.edu/academics/mit-subjects-v1

which calls API endpoint:

/subjects/courses/{subjectCode}/numbers/{subjectNumber}

If a term is included, it calls a different method, from different factory:

viewFactory.getSubjectDtls($scope.course, $scope.number.toUpperCase(), $scope.offeringTerm.toUpperCase())

API endpoint is called to make sure department entered as part of subject is valid:

/subjectCodes/{departmentCode}

This returns metadata about the department, e.g. for department 22,

departmentCode: " 22"
departmentName: "Nuclear Engineering"
schoolCode: "E"
schoolDescription: "Engineering"

Then processSearchResult (in controller homeCtrl.js) is called, whether a term was included or not in search. This sets the data
($root.searchResults) used to render the main table.

Non-MIT subjects

If it's a non-MIT search, it calls the same method, with or without a term provided:

homeFactory.getNonMitSubjectDtls($scope.nonMitCourseNumber, $scope.offeringTerm.toUpperCase())

the factory method then calls the API:

/subjectmanagement/subjects/homeSubjects/{nonMitCourseNumber}

This retrieves a list of templates and stores it in the page controller to render the main table. (For non-MIT subjects this will usually be 1 match.)

Other functionality on the page

These functions enable to user to manage a template's metadata.

Deactivate

Confirmation of term code entered in modal runs deactivateSubject(), which calls the API:

/subjects/containers/{containerId}

After the user confirms the deactivate request, the subjects list is updated.

Reactivate

Confirmation of term code entered in modal runs reactivateSubject(), which redirects to the edit page for that subject in that term (using the
containerId in the container list):

/#/editSubj/{course}/{number}/{containerId}/reactivate

Backdate

Similar to Deactivate, confirmation of term code entered in modal runs backdateContainer(), which then calls the API:

/subjects/containers/{containerId}/resetEffectiveTerm

Create New Subject link

Redirects to

/#/newSubj

This takes user to Edit Subject screen, described below.

Show All Templates for Container link

Displays all templates for a container. Each link should expand to show all templates for only that containerId.

In a few cases (e.g. 6.802) there are multiple containerIds.

uiSettings is a scope var that keeps track of user's Show All Templates choice, key is containerId.

2: Create/Edit Subject

This is the main SCASUBJI subject editing screen.

views/editSubject.html
scripts/controllers/editSubjCtrl.js
factories/editFactory.js

Clicking on link in table calls Subjects endpoint with course/number/term params (and cache buster token) and calls API:

/subjects/courses/{department}/numbers/{subject}/terms/{termCode}

Supporting data

On page load, the following lookups are made (some APIs, some from apache config):

Tier

/service/apis/tier

Sets metadata for current tier (DEV, TEST, SCHED-TEST, or PROD) e.g.:

attributesUrl: "https://sis-data-maint-dev.mit.edu/sdm/subjectAttributes/list",
gradingModesUrl: "https://sis-data-maint-dev.mit.edu/sdm/gradingModeCodes/list",
sdmUrl: "https://sis-data-maint-dev.mit.edu/sdm/",
tier: "DEV"

Department info

/subjectCodes/{departmentCode}
Sets metadata for this department; see example above.

Requisites

Retrieval API:

/subjects/containers/{containerId}/templates/{templateId}/requisites

Save API:

/subjects/containers/{containerId}/requisites

Renders querybuilder component, which adds a node to requisites. Querybuilder calls itself recursively to render nested groups.

The save button is in the editRequisites modal, markup for this modal is in /views/editSubject.html. The save function, saveRequisitesData(), is in
the edit page's controller (editSubjectCtrl.js).

DisplayControls

Gets display controls (user selected data), options (to build dropdowns), and reference point (templateId and version number). API:

/subjects/containers/{containerId}/terms/{termCode}/displayControlsAndUrls?optionsValues=Y

Under Term Plan, when user selects Fall, IAP, Spring, and/or Summer, a corresponding section will appear in the Online Listing section that
follows.

CSS

Mostly uses bootstrap default CSS.

styles/main.scss comprises all other files; add to top if need to add new files.

Some media queries should be removed (use bootstrap's responsive breakpoints).

Subject Management Documentation Index

The is the central listing for documentation pertaining to Subject Management.Subject Management Documentation Index

http://kb.mit.edu/confluence/display/istcontrib/Subject+Management+Documentation+Index

