Container-Template Subject Structure

Container/Template Subject Structure (CTSS)

Please note that this page and related pages are being developed as part of the CIM Courses Project and are subject to change.

The Container/Template Subject Structure was built as part of the CIM Courses Project. This article describes the structure and functionality of
the Container/Template Structure.

Table of Contents:

® Container/Template Subject Structure (CTSS)
® Purpose of the Container/Template Subject Structure
® Content of the Container/Template Subject Structure
® Foundational Tables
® Subject Container (SUBJECT_CONTAI NER)
® Status and Last Active Term
® Subject Template (SUBJECT_TEMPLATE)
® Subject Registerable Instance (SUBJECT_TMPL_REG | NSTANCE)
® Foundational Concepts
® Foundational Table Relationships
® Cross-Listed Subject Numbers
® Prerequisites and Corequisites, aka Requisites (SUBJECT_TMPL_REQUI SI TE)
® Example requisite trees
® Enrollment Limitations (SUBJECT_TMPL_ENROLL_LI M T)
® Other Subject Template Tables
® Equivalencies (EQs) and Scheduling Relationships (SRs)
® Basic Functionality Flow
Subject Creation
Subject Editing
Subject Deactivation
Subject Reactivation
Complex Use Cases/Test Cases

® Data Models
® Subject Container Data Model
® Subject Template Data Model
® System Rules
® Other Documentation
® Expected Behavior When A New Subject is Approved and Deactivated in the Same Proposal Term
® Subject Management Documentation Index

Purpose of the Container/Template Subject Structure

The Container/Template Subject Structure was developed to be the new system of record for subjects at MIT. It was designed to make several
improvements over legacy systems which are further discussed here.

Content of the Container/Template Subject Structure

The CTSS contains all subject data from 2013FA onward. It also contains the most recent data for some subjects that were deactivated between
2008FA and 2012SU if a subject that was active in 2013FA had an equivalency with that subject.

Foundational Tables

The Container/Template Subject Structure is built upon three foundational tables:
® Subject Container (SUBJECT_CONTAI NER) - the subject over time

® Subject Template (SUBJECT_TEMPLATE)- details about the subject during a particular period of time
® Subject Registerable Instance (SUBJECT_TMPL_REG | NSTANCE)- the subject numbers under which the subject is offered.

Subject Container (SUBJECT _CONTAI NER)

http://kb.mit.edu/confluence/x/DQRhCQ
http://kb.mit.edu/confluence/x/DQRhCQ

The Subject Container can be thought of as "the subject over time", "the conceptual subject", or more simply, just "the subject".

} COLUMN_NAME {} DATA_TYPE { NULLABLE | DATA_DEFAULT |{} COLUMN_ID |{} COMMENTS
1 SURJECT_CONTAINER_ID NUMBER(12,0) Mo {null) 1Unique identifier number of a subject container
2 SUBJECT_TYPE VARCHARZ (20 CHAR) No (null) 2Type of subject - Administrative, Crossreg, Standard
3 LAST_ACTIVE_TERM VARCHARZ (6 CHAR) Yes (null) 3Term Code {eg 2015FA) in which an inmactive subject was last active. Null for active subjects
4 STATUS VARCHARZ(20 BYTE) No {null) 45tatus of subject container - Active, Inactive
5 CREATE_BY VARCHARZ (20 CHAR) No (null) 5 Identifier of individual or system that created record. Individuals are identified by kerb id.
6 CREATE_DATE TIMESTAMP(6) No {null) 6Date and time when record was created
7 MODIFY_BY VARCHARZ (20 CHAR) Yes (null) 7 Identifier of individual or system that last modified record. Individuals are identified by kerb id.
8 MODIFY_DATE TIMESTAMP(6) Yes {null) BDate and time when record was last modified

(Screenshot up-to-date as of 2/21/2019)

When a subject is created, a Subject Container record is inserted into the Subject Container table. Since most data about a subject is stored in
the Subject Template table, there are only a few fields that pertain to the Subject Container.

Status and Last Active Term

SUBJECT_CONTAI NER contains a STATUS column. This is the status (Active/Inactive) of the subject as of the current academic term
(SBGPG_TERM where application_code = ‘AC' and curr_fut_ind ='C"). Deactivations and reactivations are usually recorded in advance. The
value in the STATUS column does not change when the action is recorded. It only changes when the action takes effect. SUBJECT _CONTAI NER
also contains a LAST_ACTI VE_TERMcolumn which is populated for deactivated containers, unless the container has been reactivated. The
LAST_ACTI VE_TERMcolumn is cleared when a subject is reactivated. The LAST_ACTI VE_TERMis updated when a deactivation or reactivation is
recorded.

The data in the STATUS and LAST_ACTI VE_TERMcolumns can be derived from the EFFECTI VE_FROM TERMand EFFECTI VE_THRU_TERMof a
container's templates (See next section for more details). The SUBJECT_CONTAI NER columns are intended to facilitate certain queries, but are
not suited for all use cases. For example, changes to subjects are usually proposed an academic year ahead of the actual year, so the subject
proposal use cases typically need the status as of a future term, not the current academic term. A container is active in a given term if the term
falls between the EFFECTI VE_FROM TERMand EFFECTI VE_THRU_TERMof any of its templates.

Subject Template (SUBJECT _TEMPLATE)

The Subject Template contains the details of a subject during a given period of time. The majority of fields that describe a subject are stored in
this table, e.g. Main Subject Number, Title, Description, etc.

Each Subject Template maps back to one and only one Subject Container. As such, a Subject Container can have multiple Subject Templates
associated with it.

§ CoLUMN_NAME DATA_TYPE { NULLABLE | DATA_DEFAULT | coLuMN_ID |{} commenTs

1 SUBJECT_TEMPLATE_ID VARCHAR2(32 BYTE] No null) 1Unique identifier GUID of a subject template

2 SUBJEC ZUnique id GUID of a container in subject_container table
3The term from which a subject tenplate is valid from
4The term upto which a subject template is valid
SPrimary subject code

GPrinary subject nunber

7 DESCRIPTION

CR) Yes TDetailed description of a subject
& SORT_KEY Tes BKey field used to sort subject in a meaningful way
5 FULL_TITLE Tes 9Full title of the approved subject

10 FULL_TITLE_SEARCHABLE s 10Field used to sort by title

HORT_TITLE
12 ALTERNATE_TITLE
13 ALTERMATE_DESCRIPTION

11Shart title of the approwed subject displayed on catalog ete.
1zAlternate title of the subject
13Alternate descriotion

h gives more information about th

CT_LEVEL Yes 145ubject level whether it is U = Undergraduate or G = Gradua
15 LECTURE_UNITS Yes 15Lecture credit units assigned for the subject

16 VARIABLE_UNITS Tes 16¥Whether variable unit subject or nat Y /N

17 LAB_UNITS Tes 17Lab credit units assigned for the subject

15 PREP_UNITS Yes 18 Prep credit units assigned for the subject

198illing units assigned for the subject
28Total load units assigned for the subject

21Tatal cred ssigned for the subject
22Catalog faculty assigned for the subject
23Catalog faculty preface

2415 the subject offered in fall Y/N

Tes 251s the subject offered for 1AP Y/N
Tes 2615 the subject offered in Spring ¥/N

7 es 2715 the subject offered in Sumser Y/N

& TERM_DURATION VARCHARZ(6D CHAR) Yes 2BDuration of term whether full term etc

5 FIRST_WEEK NUMBER(2,8) Tes 29First week term plan

] NUMBER (2, 8) Yes 30Last week term plan

VARCHARZ(60 CHAR] Yes 31 Tern plan frequency

EXT_OFFERED_YEAR Yes 32 (null)
BYTE) Yes 33When generating instructor assign records for new year, should value be taken from P{revious) or Liike) term
VARCHARZ1 BYTE) Yes radable Schedule Type Code
NUMBER(2,8) Yes 35Nunber of s that can be applied to fulfilling the UG Laboratory Requirement

36 Additional content that should be displayed in subject listings, but is not appropriate for description, enrollment limitation etc
dual or system that created record. Individuals are identified by kerb id.
ecard was created

Yes ual or system that last modified record. Individuals are identified by kerb id.

Yes 4BDate and time when record was last modified

41 VERS ION_NUM NUMBER(5,8) No

(Screenshot up-to-date as of 2/21/2019)

41version nusber of record far concurrency contral

The life of a Subject Template is determined by the Ef f ecti ve_Fr om Ter mand the Ef f ect i ve_Thr u_Ter mfields. Templates will be
contiguous (e.g. 2013FA-2015SU, 2016FA-2017SU, 2018FA-999999) unless a subject has been deactivated. A container only has templates
when it is active. There are no templates covering a period of inactivity. If a subject is reactivated, there will be a gap in the templates. For
example, if a subject is deactivated at the end of AY2017 then reactivated for AY2020, it will have one template with an effective thru term of
2017SU and another with an effective from term of 2020FA. There will be no template for 2018FA-2019SU.

Subject Registerable Instance (SUBJECT_TMPL_REG | NSTANCE)

Each Subject Template has a Registerable Instance for each subject number under which the subject is offered.

{; COLUMN_NAME {} DATA_TYPE § NULLABLE |DATA_DEFAULT |{} COLUMN_ID | {} COMMENTS
CT_TMPL_REG_INSTANCE_ID VARCHAR2(32 BYTE) Mo {null) 1Unique identifier GUID of a subject registerable instance

CT_TEMPLATE_ID VARCHAR2(32 BYTE) Mo {null) 2Unique identifier GUID of a subject template in subject_template table
38 CT_CODE VARCHAR2(4 CHAR) Mo {null) 3Subject code of the registerable instance associated with a subject
L CT_NUMBER VARCHAR2(6 CHAR) Mo {null) 4 Subject number of the registerable instance a subject
5 IS_PRIMARY VARCHARZ{1 CHAR)} Mo {null) SWhather this registerable instance is primary or not Y/N
6 DEPT_CODE VARCHAR2(4 CHAR) Yes {null) 6 Department which owns this registerable instance of the subject
7 PERCENT_CONTRIBUTION NUMBER(S,2) Yes {null) 7Percentage contribution of the dept for the subject
8 SORT_KEY VARCHAR2 (30 CHAR) Yes {null) 8 Field which has the key to sort the registerable instance
9 CREATE_BY VARCHAR2(20 CHAR) Mo {null) 9Identifier of individual or system that created record. Individuals are identified by kerb id.
10 CREATE_DATE TIMESTAMP(B) No {null) 18 Date and time when record was created
11 MODIFY_BY VARCHAR2(20 CHAR) Yes {null) 11Identifier of individual or system that last medified record. Individuals are identified by kerb id.
12 MODIFY_DATE TIMESTAMP(6) Yes {null) 12 Date and time when record was last modified

(Screenshot up-to-date as of 2/21/2019)

Foundational Concepts

Before understanding the functionality of the Container/Template Subject Structure, it is important to understand a few concepts:

Foundational Table Relationships

The foundational tables are related as seen here:

SATURN SUBJECT _TMPL_REG_INSTANCE
INSTANCE_|D

& SUBJECT_CONTAINER ID_PK (UBJECT_CONTAINER, D) £ ON = SUBJECT_TMIPL_REG_INE
. SUBJECT_TMPL_RE

o SUBJECT_TWP!
o SUBJECT_TMP
& SUBJECT TMP!

Cross-Listed Subject Numbers

A Subject is considered to be cross-listed when it is offered under two or more different Subject Numbers. One of the numbers will be designated
the primary or main number.

Although the subject numbers are conceptually just different labels for the same subject, the current registration model has students registering
for a particular number. The numbers are therefore treated as a full-fledged domain object, the Registerable Instance. Each template will have
one Registerable Instance for each number under which it is offered, including the primary number. The primary number also appears directly in
the subject template as the main subject code/number. Registerable Instances are recorded in SUBJECT_TMPL_REG | NSTANCE.

Prerequisites and Corequisites, aka Requisites (SUBJECT_TMPL_REQUI SI TE)

Prerequisites and corequisites, referred to collectively as requisites, are structured data. The structure was designed to improve the consistency
of data entry and enable software systems to interpret and analyze requisites and students' fulfillment of them correctly

Requisites are now represented as a non-binary tree structure. (see https://en.wikipedia.org/wiki/Tree_(data_structure)). Each node in the tree is
either specifies a simple requisite — a single subject, a single GIR, etc — or a compound requisite — and "AND" or "OR" relationship between two or
more requisites. Requisites are typed. As of 2/2019, the simple requisites types are subject, GIR, permission and free text.

Requisite data is stored is stored in SUBJECT_TMPL_REQUI Sl TE. The requisite types can be found in SUBJECT_REQUI SI TE_TYPE.

https://en.wikipedia.org/wiki/Tree_(data_structure)

More details on requisites and how they are handled can be found here.

Example requisite trees

The tree structure that we use in the code to represent the requisites stores the operators and operands in the requisites descriptor as a set of
linked tree nodes. From the two examples above, the trees look like this:

8.03 and 18.03

AND

8.03 18.03

(8.04 and 8.044) or permission of instructor

OR

Permission of

AND Instructor

AN

8.04 8.044

Enrollment Limitations (SUBJECT _TMPL_ENRCLL _LIM T)

Enrollment limitations, restrictions on the type or number of students who can take a subject, are structured data. The structure was designed to
allow automated enforcement of the restrictions.

Enrollment limitations are stored in SUBJECT_TMPL_ENROLL_LI M T. There are various types of enrollment limitations, such as max enrollees or
no listeners. Multiple limitations can be combined on a single template. The enrollment limit types can be found in
SUBJECT_ENROLL_LIM T_TYPE.

Note: After the structured data model was implemented, the business found the proposed CIM interface for entering them too complicated for
their users. They decided they wanted the users to enter free text. The CIM Courses project timeline and resources did not allow for coding a
process to translate the free text into the appropriate enroliment limit types. Since CIM is the main data entry point for enroliment limtations, only
two types of limits are actually being used. All enrollment limits on non-freshman seminars are type 8 (OTHER, free text). Enroliment caps for
freshman seminars are type 1 (Enrollment limited to number).

Other Subject Template Tables

http://kb.mit.edu/confluence/display/istcontrib/CIM+Courses+and+Subjects+API+-+Requisites

The remaining tables all relate back to the subject_template. They are:

SUBJECT_TMPL_ATTRI BUTE- contains information about the attributes that are associated with a subject template
SUBJECT_TMPL_GMOD- contains information about the grading mode(s) that are associated with a subject template
SUBJECT_TMPL_DI SPLAY_CTRL- contains information that control how a subject gets displayed in the Online Subject Listing
SUBJECT_TMPL_URL- contains information about the URLSs that are associated with a subject template

SUBJECT_TMPL_SEM NAR_FACULTY- contains information about the faculty that are associated with subject templates for Freshmen
Seminars

Equivalencies (EQs) and Scheduling Relationships (SRs)

Two subjects are considered equivalent if there is substantial overlap in their content such that a student shouldn't receive academic credit for
taking one if they have received credit for the other. Two subjects have a scheduling relationship if they are taught together for much or all of their
class time.

Equivalencies (EQs) and Scheduling Relationships (SRs) differ from other subject concepts because they are not related to the Subject Template.
Instead, EQs and SRs are related to the Subject Container. This is because the equivalencies and relationships are between the subjects
themselves, not the particular state of a subject as represented by a subject template. The subject "Chemistry for Physicists" is equivalent to
"Chemistry for Computer Scientists" as long as their content overlaps sufficiently. The equivalency or scheduling relationship is not affected by
minor title changes, faculty changes, description changes etc. The subjects may no longer be equivalent if a substantial change is made to the
content of one of the subjects. Likewise, departments could decide to no longer teach two subjects together. In these cases, the equivalency or
scheduling relationship between the subject containers ends.

Equivalencies are recorded in SUBJECT_CONTAI NER_EQUI V. Scheduling relationships are recorded in SUBJECT_CONTAI NER_RELATI ON. Each
equivalency or relationship has two records so the equivalency or relationship is represented in both directions (eg Container A is equivalent to
Container B and Container B is equivalent to Container A). When an equivalency or scheduling relationship is ongoing, the thru_term of the
corresponding record is '999999'. When it ends, the thru_term is set to the appropriate end term.

Both EQs and SRs between two subject must be reflexive, e.g. if Subject A is equivalent to Subject B, then Subject B must be equivalent to
Subject A. Similarly, if Subject A has a scheduling relationship with Subject B, then Subject B must have a scheduling relationship with Subject A.

If more than two subjects are involved in an EQ or SR, then those relationships must be transitive. This means that if Subject A is EQ to Subject B
and Subject C, then Subject B must be EQ to Subject A and Subject C, and Subject C must be EQ to Subject A and Subject B.

Basic Functionality Flow

(Note that only the relevant fields are listed in each table)

Subject Creation

® When a Subject is created (currently accomplished through CIM Courses, SCASUBJI, or the Cross-Registration functionality in
AddDrop), a record is inserted into the Subject_Container table to represent the Subject.
® Subject_Container

Subject_Container_ID Subject_Type Status Last_Active_Term

ABC Standard Active | (null)

® Next, a record is inserted into the Subject_Template table to represent the way the Subject will be offered between the Effective From
Term and Effective Thru Term.
® Subject_Template

Subject_Template_ID Subject_Container_ID Main_Subject_Code Main_Subject_Number Full Effective_From_Term
Title
10002 ABC 1 100T Archery 2017FA

® Registerable Instance Insertion
® |f the Subject is not cross-listed, a single record will be inserted into the Subject_Tmpl_Reg_Instance table
® Subject_Tmpl_Reg_Instance

Subject_Tmpl_Reg_lInstance_ID Subject_Template ID Subject_Code Subject_ Number Is_Primary

RI1001 10002 1 100T Y

® |f the Subject is cross-listed, a record for each Subject Number will be inserted into Subject_Tmpl_Reg_Instance. This includes
the main subject number associated with the Subject Template.
® Subject_Tmpl_Reg_lInstance

Subject_Tmpl_Reg_lInstance_ID Subject_Template ID Subject_Code Subject Number Is_Primary
RI0O01 10002 1 100T Y

R1002 10002 3 300T N

Subject Editing

When Subjects are edited, new Subject Template and Registerable Instance records will be inserted and/or existing Subject Template and
Registerable Instance records will be updated.

® The following is a common use case for editing a subject. The user makes a change to the "Full Title" field effective 2020FA that result in
the creation of a new template. Existing Data:
® Subject_Container

Subject_Container_ID Subject_Type Status Last_Active_Term

ABC Standard Active = (null)

® Subject_Template

Subject_Template_ID Subject_Container_ID Main_Subject_Code Main_Subject_ Number Full Effective_From_Term
Title

10000 ABC 1 101T Basket = 2013FA
Weaving

10001 ABC 1 101T Basket = 2015FA
Weaving

® User Edit: The user changes the Full Title of the subject to "The Weaving of Baskets", effective 2020FA. Note that Subject_Template_ID
10001 gets "bookended" with an effective_thru_term of 2019SU and a new template (10002) gets inserted with the updated Full Title
effective 2020FA-999999. Resulting data*:

® Subject_Template

Subject_Template_ID Subject_Container_ID Main_Subject_Code Main_Subject_ Number Full Effective_From_Term
Title

10000 ABC 1 101T Basket = 2013FA
Weaving

10001 ABC 1 101T Basket = 2015FA
Weaving

10002 ABC 1 101T The 2020FA
Weaving

of
Baskets

*Note that Subject_Container is unaffected by this type of change. A new Subject_Tmpl_Reg_Instance is inserted that relates back to
subject_template_id 10002.

Subject Deactivation

When Subjects are deactivated, both the Subject Container and Subject Template tables are updated to reflect the deactivation. Consider the
following example:

® Subject are generally deactivated effective in the proposal year - which for this case we will assume is 2020FA. Assume that the
deactivation approval occurs when the current term is 2019FA. A Subject exists with the following Container and Template records:

® Subject_Container
Subject_Container_ID Subject_Type Status Last_Active_Term
ABC Standard Active | (null)

® Subject_Template

Subject_Template_ID Subject_Container_ID Main_Subject_Code Main_Subject_Number Effective_From_Term Effective

10000 ABC 1 101T 2013FA 2014SU

10001 ABC 1 101T 2015FA 999999

® User Edit: The user deactivates the subject effective 2020FA. The resulting container and templates for the Subject will be as follows:
® Subject_Container

Subject_Container_ID Subject_Type Status Last_Active_Term

ABC Standard Active = 2019SU
® Subject_Template

Subject_Template_ID Subject_Container_ID Main_Subject_Code Main_Subject Number Effective_From_Term Effective
10000 ABC 1 100T 2013FA 2014SU

10001 ABC 1 100T 2015FA 2019SU

* Note that the St at us field retains a value of "Active" even though the deactivation is approved. This is because the current term is
2019FA,; the subject will remain active through its | ast _act i ve_t er mof 2019SU. It will be updated with a St at us of “Inactive" when
the current term changes to 2020FA.

Subject Reactivation

When Subjects are reactivated, both the Subject Container and Subject Template tables are updated to reflect the reactivation. Consider the
following example:

® A subject was deactivated effective 2017FA, soit's | ast _acti ve_t er mwas 2016SU:
Subject_Container

Subject_Container_ID Subject Type Status Last_Active_Term
ABC Standard Inactive = 2016SU
® Subject_Template
Subject_Template_ID Subject_Container_ID Main_Subject_Code Main_Subject_ Number Effective_From_Term Effective
10000 ABC 1 101T 2013FA 2014SU

10001 ABC 1 101T 2015FA 2016SU

User Edit:The user reactivates the subject effective 2020FA. The resulting container and templates for the Subject will be as follows:
Subject_Container

Subject_Container_ID Subject Type Status Last_Active_Term

ABC Standard Inactive = (null)
® Subject_Template

Subject_Template_ID Subject_Container_ID Main_Subject_Code Main_Subject Number Effective_From_Term Effective

10000 ABC 1 100T 2013FA 2014SU
10001 ABC 1 100T 2015FA 2016SU
10002 ABC 1 100T 2020FA 999999

® Note that the St at us field retains a value of "Inactive" even though the reactivation is approved. This is because the current term is
2019FA, the subject will remain inactive until the current term is equal to the ef f ecti ve_f r om_t er mof its newly created template
(2020FA). It will be updated with a St at us of "Active” when the current term changes to 2020FA.

Complex Use Cases/Test Cases

® The purpose of the use cases outlined above is to give the reader a basic understanding of how the CTSS behaves as a result of certain
user actions. If you are interested in how the CTSS behaves in more complex scenarios (and also how data is backfilled to legacy
systems based on those changes), the automated test cases developed as part the CIM Courses project should serve as a valuable
resource: Subject Management Automated Test Case Index.

http://kb.mit.edu/confluence/x/7Q5xCQ0

Data Models

Subject Container Data Model

SATURNSURJECT_CONTAINER_EQUIV SATURNSUBJECT TEMPLATE

[P * SUBJECT_CONTAINER_EQUIV_ID 7 * SUBJECT_TEMFLATE D

F = SUSJECT CONTAINERID F * SUBJECT_CONTAINER D i

SRR AR 1 * EFFECTIVE FROM_TERM VARCHAR? (6 CHARY
C U * EFFECTIVE_THRU_TERM VARCHARZ (6 CHAR)
= THN..J]K\I U * MAIN_SUEJECT_CODE VARCHAS,

* CREATE BY U * MAIN_SUSJECT_HUMBER VARCIAS? i CHAR)
* CREATE DATE DESCRIPTICN VARCHAR? (4000 CHAR)
MODIFY_8¥ SORT_KEY VARCHARS 30 AR
MODIFY_DATE FULLTITLE VARCHARZ (255 CHARY
" | FULL] uve SEARCHABLE VARCHARZ (255 CHAR)
/o= SUBJECT_CONTAINER_EQUIV_PK {SUBJECT_CONTAINER_EQUN_0) bl bl
SUBJECT_CONTAINER_BQUIV_FX1 (SUJECT_CONTAINER IO} ALTERNATE _r e VARCHARZ (255 CHARY
SUBJECT CONTAINER EQUIV_FX2 (SUBJECT EQUIV CONTAINER 10 .) ALTERNATE_ DESCRIPTION VARCHARZ (4000 CHAR)
< SUBJECT_CONTAINER_EQUIV_IDKL SUBJECT_CONTAINER ID) B TE Tl L L SUBJECT_ | VEL VARCHAR? (2 CHAR)
< SUSJECT CONTAINER_EQUIV_IDKZ SUBJECT_EQUIV_CONTAINER, 1D) * SUBJECT_CONTAINER 1D NUMBER (10) LECTURE UnTS NUMBER 4.2
@ SUBECT.CONTAINER_ECUIV_J0K3 SURJECT. COMTANR.ID, SUKCT_BUNY_CONTAINE £ * SUBIECT_TWPE VARCHARZ (20 CHAR VARIABLE_UNITS wu;zmaz (1CHAR
& SULJECT CONTAINER EQUIV P {SUEJECT CONTAINER EQUIV. LAST_ACTIVE TERM LABUNITS, et
* STATUS £P_UNITS
* CREATE 8Y e o BwhGUNTS -iuMsr'z b
* CREATE_DATE TOTAL LOAD_UNT “
MODIFY_8Y VARCAARS (20 CHAR) TOTAL CREDIT.LIMIT,UNITS NBER 4
snwmswtcr CONTAINER_RELATION] MODIFY DATE TIMESTAMP CATALDG_FACUL VARCHARZ (300 CHAR)
2 NTAINER_RELATION_ IO 1 CATALOG rac..m PREFACE VARCHARZ (10 CHAR)
F . summ mnm-m D Bt fion SUBJECT, CONTAIHER, D, PK {SUBJECT CONTAINER, 1) 1S OFFERED. FAL VARCHAR2 (1 CHAR)
¥ * SUBJECT_RELATE CONTAINER 1O £ (10 & SUBJECT_CONTAINER_ID_PK (SUBJECT_CONTAINER 1D} s OFFEReD AP VARCHARZ (1 CHAR)
* RELATIONSHIP_TYPE VARCHARZ (10 BYTD . - . 15 OFFERED_SPRING VARCHARZ (1 CHAR)
* FROM_TERM VARCHARZ (6 BYTE) B OFFIRED, SUMMER VARCHARZ (1 CHAR)
* THRU_TERM VARCHARZ (6 BYTE) TERM_DURATION VARCHARZ (60 CHAR)
* CREATE BY VARCHAR (20 CHAR) ms._wm NUMEER (2)
CREATE DATE TIMESTAMP LAST WEEK NUMEER 2)
MODY_BY VARCHARE (20 CHAR) FREGUENCY VARCHARZ (60 CHAR)
MODFY_DATE TIMESTAMP NEXT QFFERED YEAR NUMBER 14)
ROLL_FACULTY_IND VARCHARZ (1 BYTE}
o SURJECT_CONTAINER_RELATION_PK SUBJECT_CONTAINER RELATION_|0) GRABL SCHED, 1YPE CODE Nttt
SUBJECT_CONTAINER_RELATION_FiC1 SUBJECT_CONTAINER 100 UG_DEGREE_AUDIT LAB_UNITS NUMEER 12)
SURJECT_CONTAINER_RELATION_F2 (SURJECT_RELATE CONTAINER 1D} ADOITIONAL_LISTING_CONTENT VARCHARZ (500 CHARY
& SUBJECT_CONTAINER_RELATION PK (SUBJECT_CONTAINER REATION 101 E:::E"n:\rs
& SUBJECT_ CONTAINER_REL J0XL SUBIECT CONTAINER 10} e
& SUBJECT_ CONTAINER_REL_|OX2 (SUBJECT_RELATE_CONTAINER 1) e =
* VERSION_NUM
La= SUBJECT_TEM?LATE_PK {SUBJECT_TEMPLATE Dy
& SUBJECT_TEMPLATE_UQ_ L IMAIN_SUSJECT_COOE, MAIN SUBIECT_NUMBER, EFFECTIVE FROM_TERM)
& SUBJECT_TEMPLATE_UQ_2 IMAIN_SUSJECT_CODE, MAIN_SUBJECT_NUMBER, EFFECTIVE_THRU_TERM}
P SUBJECT_TEMPLATE_FX1 (SUBJECT_CONTAINER_ID)
< SUBJECT_TEMPLATE IDK] (SUBJECT_CONTAINER_ID, EFFECTIVE FROM_TERM)
< SUBJECT_TEMPLATE I (MAIN_SUSJECT, CODE, MAIN_SUBJECT_NUMBER)
<@ SUSIECT_ TEMPLATE PR (SUSJECT TEMPLATE Iy
3 SUBJECT_ TEMPLATE_UQ_ 1 (MAIN_SUSJECT_CODE, MAIN SUBJECT_NUMBER, EFFECTIVE FROM_TERM)
& SUBJECT TEMPLATE U2 MAIN_SUSJECT CODE, MAIN_SUBJECT_ NUMBER, EFFECTIVE THRY TERM)
SARRHE B FCT COMTARER) SATURNSUBJECT TEMPLATE SATURNSUBJECT TMPL_REG INSTANCE
A @y P - SUBIECT TEMPLATE ID WARCHAR2 (32 BYTE! P~ SUBECT TMPL REG_MNSTANCE D VARCHARZ (32 BvTD)
. F * SUBIECT_CONTAINER IO HUMBER (10 IF * SUBECT TEMPLATE ID VARCHARZ (32 BYTE
WARCHAR. U = EFFECTIVE_FROM_TERM VARCHARR {6 CHAR) * SURJECT COOE VARCHARZ {4 CHAR)
WARCHARZ {20 BYTE! U - EFFECTIVE_THRU TERM WARCHARZ 6 CHAR) + SUBECT NUMBER VARCHARZ 1 CHAR)
WARCHARZ 120 CHARI JeU * MAIN_SUBJECT_ CODE WARCHARZ ¢4 CHAR) + 1S PRIMARY VARCHAR? (1 CHAR)
t T 5 a1
TIMESTAMP U~ MAIN_SUBJECT NUMBER VARCHARZ (6 CHAR) DEFT_CODE WARCHAR i CHAR)
VARCHAR2{20 CHAR) DESCRIPTION VARCHARZ (000 CHAR) B
e A _ PERCENT_CONTRIBUTION NUMBER (5.2)
SORT KEY WARCHARZ (30 CHAR SORT KEY VARCHAR? (30 CHAR
e SUBJECT_CONTAIER ID_PX SUBJECT_CONTAINELID) WL Tl e T ff - CREATE 8v VARCHAR? (20 CHAR)
FULL_TITLE SEARCHABLE WARCHARZ {255 CHAR) - CREATE DATE TIMETA
i@ SUBJECT CONTAINER I0_PK SUBJECT_CONTAINER ID) SHORT_TITLE VARCHARZ (30 CHARI MODIFY_BY VARCHARZ 20 CHAR)
ALTERNATE_TITLE WARCHARZ (255 CHAR) MODIFY DATE TIMETAMP
ALTERNATE_DESCRIPTION WARCHARZ (4000 CHAR) -
SUBJETT_LEVEL VARCHARS { = SUBJECT _TMPIL_REG_INSTANCE P GUBJECT_TMPL_REG_INSTANCEID)
LECTURE_UNITS NUMBER .2 55 SUBJECT_TMPL_REG_INSTANCE FI L {SUBJECT_TEMPLATE_ID)
WARIABLE UNITS WARCHARD (L CHAR)
LABUNITS NUMBER 14.2) < SUBJECT_TMPL_REG_INSTANCE PK SUBJECT_TMPL_REG INSTANCEID
PRI UNITS NUMBER {2.2) < SUBJECT_TMPL_REG_INST_IDX1 SUBJECT_TEMPLATE IC)
BILLING_UNITS NUMBER 4.2} < SUBJECT_TMPL_REG_INST_IDN2 SUBJECT_CODE, SUBJECT NUMBER]
TOTAL LOAD_UNITS NUMBER (d.2)
E‘ﬂﬁm"‘“‘mﬂ‘v" B ci don cu 2SN M 31 1L
VARCHAR? {10 CHAR P C SUBECTTMPL ATTRIUTE I VARCHARS (32 81TE)
VARGHARZ {1 CHAR) F * SUBIECT_TEMPLATE 1D VARCHARZ (32 EYTED
S * ATTRIBUTE CODE VARCHARZ (4 CHAK)
VARCHARZ {L CHAR) * CREATE BY VARCHARZ (20 CHARI
VARCHARZ {1 CHAR) — | AT JTEE DA
VARCHAR? (50 CHAR) MO DIFY_BY VARCHARZ 20 CHARI
NUMBER 2) MO NFY_DATE TIMESTAMP
NUMBER 2) = SUBJECT_TMPL_ATTRIBUTE_PK SUBJECT_TMPL_ATTRBUTE Iy
Snchanzippnan [SUBJECT TP L_ATTRIBLITE_5 | SUBJECT_TBMPLATE AD)
NUMBER i) L = C =
WARCHARZ {L BYTE) @ SUBJECT_TMPL ATTRIEUTE_PK SUBJECT TMPL_ATTREUTE iy
SATURN.SUBJECT_TMPL_SEMINAR_FACULTY :ﬁff‘;:“;}'l R
P+ SUBJECT_TMPL_SBM_FACULTY_ID VARCHARZ (32 BYTE) VARCHAR smcmm ES AT B 3 L Iy WA G
F * SUBJECT_TEMPLATE 1D VARCHARR (32 BYTE! \mcwm A P SUBECTTMPL GMOD D VARCHARE
* FACULTY.TYPE 0 CHAR) TIMETAMP F * SUBJECT_TEMPLATE_ID VARCHAR? (
* FACULTY NAME VARCHARR {60 CHARI \RCHARD @20 E] VARCHARZ
FACULTY DEPT VARCHARZ {60 CHARI TIMETAMP VARCHARZ [
FACULTY_BIOSKETCH VARCHARZ {2000 CHAR) NUMBER {51 AR
FACULTY_KERBEROS_ID VARCHARZ (8 CHAR) , TIMEST,
* CREATE_BY VARCHARZ (20 € HARI [n— = SURUECT_TEMPLATE PE (SURJECT_TEMPLATE) Y t \umcmz (20 CHAR)
Nk R SRR RUPLATE a3 YAl SUREC1-000F AN ECT WoABER BT et T LEED
MODIFY_BY VARCHARR (20 CHARI @ a_ o SURIECT_TVPL CMOD PR SR TVRL GMOT D)
MODIFY_DATE TIMESTAMP 55 SUBJECT_TEMPLATE FX | SUBJECT_CONTAINER D) - — — - — —
= SUBJECT_TMPL SEM_FACULTY_PK SURECT TMPL SEM_FACULTY 1) < SUBJECT_TEMPLATE 10X L (SUBJECT_CONTAINER_ID, EFFECTIVE_FROM_TERM) 95 SULKCT. TMLMOD,FCL SRKECT. TEMPLATE Y
CT_TMPL_GMOD 1001 SUBJECT_TEMPLATE J0)
T TMPL SEM_FACULTY FEL T TEMPLATE SUBJECT_TEMPLATE IO 2 (MAIN_SUBJECT_CODE, MAIN_SUBJECT_NUMBER) @ SUBJECT . & B x
B SURKECT,TMPL SEM, 1 SLRECT, o G SUBJECT_TEMPLATE K. SUBJECT_TEMPLATE |0y 4 SUBJECT_TMPL_GMOD PK (SUBJECT_TMPL GMOD_IDY
SR TS FACL Y DU K T L OSe)LEAC < SUBJECT_TEMPLATE UG_L MAIN_SUBJECT_CODE MAIN_SUBJECT_NUMBER, EFFECTIVE_FROM TERM)
% SUBJECT_TMPL SEM _FAC 101 (SUBJECT D) & SUBJECT_TEMPLATE UGQ_2 MAIN_SUBJECT_CODE, MAIN_SUBJECT_NUMBER, EFFECTIVE_THRU_TERM) = AT T TWPL_ENROLL_LIMIT
P+ SURJECT_TMPL_ENROLLUMITID VARCHARZ (32 8YTE)
F * SUBIECT_TBMPLATE 1D VARCHARZ (32 EYTE)
* ENROLL_UMIT CODE WUMBER ()
HUMBER_GUALFIER NUMBER |
TENT_GUAFIER VARCHARR (2056 BYTE)
FRIE_TEXT VARCHARD (2056 CHAR)
* CREATE_BY VARCHARZ {20 CHARI
* CREATE_DATE TIMESTAMP
MODIFY_BY VARCHARZ (20 CHARI
MODIFY_DATE TRIESTAMP
2= SUBJECT TMPL ENROLL LIMIT_P SURJECT_TMPL_ENROLL UMITID)
SATURN.SUBJECT TMPL_URL SATURN.SUBJECT TMPL_DISPLAY_CTRL [53 SUBIECT_TMPLENRDLL_LIMIT_FKL SUBJECT_TEMPLATE ID)
P * SUBJECT TMPLURLID VARCHAR? (32 BYTE) P " SURJECT_TMPL DISPLAY CTRLID VARCHARZ {32 BYTE) < SUBJECT_ TMPL ENROLL LIMIT_PK SUBJECT TMPL_ENROLL LIMIT DY
F - SUBIECT TEMPLATEID VARCHAR? (32 BYTE) F * SUBJECT_TEMPLATE 1D WARCHARZ {32 BYTE) ~=
© TERM TYPE VARCHARZ @ CHAR - TERM_TWE WARCHAR2 (2 CHAR)
* UAL VARCHARR (2000 CHAR) * 05 FACULTY_SOURCE WARCHAR2 {2 CHAR) SATURN SUBJECT, TMPL REQUISITE
* CREATE BY WARCHARZ 20 CHAR) O_CUSTOM_FACULTY WARCHARZ {204 CHAR) T TR B e L T T
* CREATE_DATE TIMESTAM * CREATE_BY WARCHARZ {20 CHARI F e WARCHARZ (32 BYTE)
MODIFY_&Y WARCHARZ (20 CHAR) * CREATE_DATE TIMESTAMP WARCHAR2 (1 BYTE)
MODIFY_DATE TMESTAMP MODIFY BY VARCHARZ {20 CHARI NUMBER (4)
MODIFY DATE TIMESTAMP I VARCHARZ (150 CHAR)
= SUBJECT TMPL URL P SUBJECT TMPL_URL 10V - COMPOSITE REQ_OPIRATION VARCHARZ (3 CHAR)
55 SUJEC T THPL_URL P L SUBIECT TBWPLATEICY &= SUBJECT_TMPL_DPLAY_CTRL_PX SUSJECT TMPL DISPLAY CTRL 1) PARENT_RE} ID ARCHAR? (32 BYTE)
* CREATE BY VARCHARZ (20 CHA
& SUBJECT TMPL_URL_IDKL SUBJECT TBAPLATE IV %3 SUBJECT_TMPL_DISPLAY_CTRL_FK1 SUBJECT TEMPLATE Iy N AT i 'rwml:.!mw ALl
& SUBJECT_TMPL_URL_PK SUBJECT_TMPL_LRL IOV ca SUBJECT_TMPL_DISPLAY_CTiL_IDXL SUBIECT_TEMPLATE ID) MODIFY BY ARCHAR? (20 CHAR)
3 SUBJECT_TMPL_DISPLAY_CTRL_PK SUBIECT TMPL_DIPLAY_CTRLID) MODIFY DATE TMESTAMP
|om SUBIECT_TMPL_REC LISITE_PK SUBJECT_TMPL_REQUIITE D)
[SURIECT_TMPL_REQ UISITE_FK1 (SUBJECT_TEMPLATE_ID)
@ SUBJECT_TMPL_REQUISITE_I0h L SUBJECT_TEMPLATE i)
@ SUBIECT_TMPL_REQUISITE_I0h 2 (REQUISTE TYPE_CODE, REQUSITE VAWE
 SUBIECT.TMPL_REDUSITE P SUBJECT TMPL REQUISITE ID)

System Rules

A Subject Container must always have at least one template.

A Subject Container cannot be created with any status other than "Active".

The Subject Template associated with a new Subject Container must have an Effective Thru Term of "999999".

For any Subject Container, the Effective From Term and Effective Thru Term of its associated Subject Templates cannot overlap.

A Subject Container's Templates will be contiguous (no gaps) unless the Container has been Deactivated or Reactivated.

Changes to a Subject Template's Effective Thru Term will be handled by the system logic (with the possible exception to Subject
Deactivation).

If a Subject is Inactive, it will not have any templates past its deactivation term.

A subject cannot be deactivated if any students are registered for the subject.

Equivalencies between two containers cannot begin before the earliest template for either container.

Inactive containers can be part of equivalencies.

Equivalencies are reflexive. If Container A is equivalent to Container B then Container B is equivalent to Container A for the same period
of time.

Equivalencies are transitive. If Container A is equivalent to both Container B and Container C for some period of time, then Container B
must be equivalent to Container C and Container C must be equivalent to Container B for the same period of time.

There can be more than one SUBJECT_CONTAINER_EQUIV record for the same combination of SUBJECT_CONTAINER_ID and
SUBJECT_EQUIV_CONTAINER_ID. (This would occur if the two subjects stopped being equivalent a some point and then later became
equivalent again.). The effective periods of the records must not overlap.

Scheduling relationships between two containers cannot begin before the earliest template for either container.

Inactive containers cannot be part of active scheduling relationships.

Both containers must have templates for the entire period of the scheduling relationship.

Scheduling relationships are reflexive. If Container A has a scheduling relationship with Container B then Container B must have a
scheduling relationship with Container A for the same period of time.

Scheduling relationships are transitive. If Container A has a scheduling relationship with both Container B and Container C for some
period of time, then Container B must have a scheduling relationship with Container C and Container C must have a scheduling
relationship with Container B for the same period of time.

There can be more than one SUBJECT_CONTAINER_RELATION record for the same combination of SUBJECT_CONTAINER_ID and
SUBJECT_RELATE_CONTAINER_ID. (This would occur if the two subjects stopped meeting together a some point and then later began
meeting together again.). The effective periods of the records must not overlap.

Other Documentation

Expected Behavior When A New Subject is Approved and Deactivated in the Same
Proposal Term

When a subject is approved and then deactivated in same proposal term (e.g. 2019FA) the expected behavior in each environment differs. The
expected behavior is as follows:

1.

2.

3.

CTSS
a. The container, its templates and related records are deleted
b. EQs and SRs are deleted
c. XML for the subject is stored in SUBJECT_DELETED so that the XML can be inserted into the CIM Outbound Feed to get the
subject to rest
CIS
a. SCRCI_PROPOSAL thru_term is set to one minus the effective term
MITSIS
a. SCRSU_VAR record will be set to inactive

Subject Management Documentation Index

The Subject Management Documentation Index is the central listing for documentation pertaining to Subject Management.

http://kb.mit.edu/confluence/x/LglhCQ

